p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.105D4, D4⋊8(C2×D4), Q8⋊8(C2×D4), C4○D4⋊14D4, Q8⋊D4⋊2C2, C4⋊C4.8C23, (C2×C8).9C23, D4⋊D4⋊14C2, C22⋊D8⋊12C2, (C2×D8)⋊15C22, C22⋊C8⋊5C22, C4.43(C22×D4), C4.106C22≀C2, C4⋊D4⋊52C22, C22⋊5(C8⋊C22), C24.4C4⋊5C2, (C2×C4).225C24, (C2×SD16)⋊4C22, (C2×D4).28C23, C23.648(C2×D4), (C22×C4).787D4, D4⋊C4⋊10C22, Q8⋊C4⋊13C22, C22.17C22≀C2, C23.36D4⋊1C2, (C22×D4)⋊17C22, (C2×M4(2))⋊2C22, (C2×Q8).353C23, (C22×Q8)⋊54C22, C2.8(D8⋊C22), (C23×C4).545C22, (C22×C4).963C23, C22.485(C22×D4), (C2×C8⋊C22)⋊7C2, (C2×C4⋊D4)⋊45C2, (C2×C4⋊C4)⋊46C22, (C2×C4).452(C2×D4), C2.11(C2×C8⋊C22), C2.43(C2×C22≀C2), (C22×C4○D4)⋊10C2, (C2×C4○D4)⋊64C22, SmallGroup(128,1738)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.105D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, eae-1=faf=ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=de3 >
Subgroups: 844 in 403 conjugacy classes, 110 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C24.4C4, C23.36D4, C22⋊D8, Q8⋊D4, D4⋊D4, C2×C4⋊D4, C2×C8⋊C22, C22×C4○D4, C24.105D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C8⋊C22, C22×D4, C2×C22≀C2, C2×C8⋊C22, D8⋊C22, C24.105D4
(1 22)(2 13)(3 24)(4 15)(5 18)(6 9)(7 20)(8 11)(10 27)(12 29)(14 31)(16 25)(17 32)(19 26)(21 28)(23 30)
(1 29)(2 26)(3 31)(4 28)(5 25)(6 30)(7 27)(8 32)(9 23)(10 20)(11 17)(12 22)(13 19)(14 24)(15 21)(16 18)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 8)(3 7)(4 6)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(26 32)(27 31)(28 30)
G:=sub<Sym(32)| (1,22)(2,13)(3,24)(4,15)(5,18)(6,9)(7,20)(8,11)(10,27)(12,29)(14,31)(16,25)(17,32)(19,26)(21,28)(23,30), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,23)(10,20)(11,17)(12,22)(13,19)(14,24)(15,21)(16,18), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(26,32)(27,31)(28,30)>;
G:=Group( (1,22)(2,13)(3,24)(4,15)(5,18)(6,9)(7,20)(8,11)(10,27)(12,29)(14,31)(16,25)(17,32)(19,26)(21,28)(23,30), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,23)(10,20)(11,17)(12,22)(13,19)(14,24)(15,21)(16,18), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(26,32)(27,31)(28,30) );
G=PermutationGroup([[(1,22),(2,13),(3,24),(4,15),(5,18),(6,9),(7,20),(8,11),(10,27),(12,29),(14,31),(16,25),(17,32),(19,26),(21,28),(23,30)], [(1,29),(2,26),(3,31),(4,28),(5,25),(6,30),(7,27),(8,32),(9,23),(10,20),(11,17),(12,22),(13,19),(14,24),(15,21),(16,18)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,8),(3,7),(4,6),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(26,32),(27,31),(28,30)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2L | 2M | 2N | 4A | ··· | 4F | 4G | ··· | 4K | 4L | 4M | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C8⋊C22 | D8⋊C22 |
kernel | C24.105D4 | C24.4C4 | C23.36D4 | C22⋊D8 | Q8⋊D4 | D4⋊D4 | C2×C4⋊D4 | C2×C8⋊C22 | C22×C4○D4 | C22×C4 | C4○D4 | C24 | C22 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 3 | 8 | 1 | 2 | 2 |
Matrix representation of C24.105D4 ►in GL6(ℤ)
1 | -1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | -1 | 1 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 1 | -2 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
-2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 1 | 1 | -2 |
0 | 0 | -1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,-1,0,0,0,1,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,2,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,1,1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,-2,0,0,1],[-1,-2,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,-1,1,0,0,0,0,0,1,0,0,0,0,0,-2,-1] >;
C24.105D4 in GAP, Magma, Sage, TeX
C_2^4._{105}D_4
% in TeX
G:=Group("C2^4.105D4");
// GroupNames label
G:=SmallGroup(128,1738);
// by ID
G=gap.SmallGroup(128,1738);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,2019,248,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d*e^3>;
// generators/relations